2019 Earth Science Technology Forum (ESTF2019) June 11-13, 2019, NASA Ames

Panel Session: Integrating Software and Hardware for New Observing Strategies

Chris Ruf

Professor of Atmospheric Science and Electrical Engineering
University of Michigan
Principal Investigator, NASA CYGNSS Mission

CYGNSS Science Objectives and Mission Design

CYGNSS Mission consists of 8 microsatellites, each with a 4-channel GPS bi-static radar receiver

Science Goals

-Understand the coupling between ocean surface properties, moist atmospheric thermodynamics, radiation, and convective dynamics in the inner core of a tropical cyclone (TC

CYGNSS uses a new measurement technique and a new satellite mission architecture

- -Measure the distortion of GPS signals scattered from the ocean surface to determine ocean surface roughness and wind speed
- Use small satellites so many can be flown to improve sampling
- The constellation lies in a common ~520 km altitude circular orbit at 35° inclination

CYGNSS Pre-launch Development **Lessons Learned**

Constellation assembly and testing

- -Multiple, parallel, focused engineering models to flesh out systemic design risks
- First flight model follows more traditional AI&T
- -2 through N FMs built with less testing at intermediate stages of A&I

Redefining reliability at the constellation (not spacecraft) level

- -Allows for more single points of failure at s/c level
- -Constellation-level redundancy

CYGNSS Mission Operations Lessons Learned

Early on-orbit ops for the constellation is not that different in approach, just xN busier

Autonomous routine ground contacts

Once the commissioning phase is over, it is critical to automate the regular, repetitive tasks such as scheduled ground contacts, engineering state-of-health monitoring, and science data downlinks

Autonomous recovery from anomalies

- —Anomalies happen. It is critical for recovery from them to not require extensive manual intervention from the ground, unless they are anomalous anomalies.
- It is critical to understand and have robust, reliable detection and classification of common and anomalous anomalies

Automated command scripting for non-standard ops

-Support differential drag s/c attitude maneuvers

CYGNSS Science Investigations Lessons Learned

Automated command scripting for non-standard ops

 Support a wide variety of science team investigations with special data-taking ops

❖24/7 Operations @ 100%Duty Cycle

- -Simplifies ground ops
- Led to discovery of significant new science and applications capabilities from GPS reflections over land

